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Abstract Spectropolarimetric reconstructions of the photospheric vector magnetic field
are intrinsically limited by the 180◦ ambiguity in the orientation of the transverse com-
ponent. The successful launch and operation of Solar Orbiter has made the removal
of the 180◦ ambiguity possible using solely observations obtained from two different
vantage points. While the exploitation of such a possibility is straightforward in prin-
ciple, it is less so in practice and it is therefore important to assess the accuracy and
limitations, as a function of both the spacecrafts’ orbits and measurement principles.
In this work we present a stereoscopic disambiguation method (SDM) and discuss a
thorough testing of its accuracy in applications to modelled active regions and quiet-
Sun observations. In a first series of tests, we employ magnetograms extracted from
three different numerical simulations as test fields, and model observations of the mag-
netograms from different angles and distances. In these more idealized tests, the SDM
is proven to to reach a 100 % disambiguation accuracy when applied to moderately-to-
well resolved fields. In such favorable conditions, the accuracy is almost independent
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of the relative position of the spacecrafts, with the obvious exceptions of configurations
where the spacecrafts are within few degrees from co-alignment or quadrature. Even in

the case of disambiguation of quiet-Sun magnetograms with significant under-resolved
spatial scales, the SDM provides an accuracy between 82 % and 98 % depending on

the field strength. The accuracy of the SDM is found to be mostly sensitive to the
variable spatial resolution of Solar Orbiter in its highly elliptic orbit, as well as to
the intrinsic spatial scale of the observed field. Additionally, we provide an example

of the expected accuracy as a function of time that can be used to optimally place
remote-sensing observing windows during Solar Orbiter observation planning. Finally,

as a more realistic test, we consider magnetograms that are obtained using a radiative
transfer inversion code and the SO/PHI Software siMulator (SOPHISM) applied to a
3D-simulation of a pore, and we present a preliminary discussion of the effect of the

viewing angle on the observed field. In this more realistic test of application of the
SDM, the method is able to successfully remove the ambiguity in strong-field areas.

Keywords: Magnetic fields, Photosphere; Polarization, Optical

1. Introduction

The magnetic field on the Sun is measured by remote sensing based on interpretation of
spectropolarimetric observations of the emitted light (see, e.g. Lites, 2000). In a tradi-
tional inversion technique applied to such measurements, the observed Stokes spectra

are parametrically matched by synthetic spectra determined by the emission model
(e.g. the Zeeman effect), the propagation model (which requires a model of the solar

atmosphere) and the detector system; see, e.g. del Toro Iniesta (2007).
However, even leaving aside any measurement errors affecting the measured spectra

and any systematic modeling errors affecting the spectropolarimetric inversions, the

vector field at a given location still cannot be fully known. While the line-of-sight
(LoS, hereafter) component (to the observer) can be fully reconstructed, the transverse

component can be inferred in magnitude and direction only, but not in orientation. This
results in an intrinsic 180◦ ambiguity in the orientation of the transverse component.

To fully determine the vector magnetic field, this ambiguity must be removed (Harvey,
1969).

In the semi-classical picture, the ambiguity is due to the invariance of the Stokes

vector to a 180◦ rotation of the reference system about the LoS-axis. Therefore, the
180◦ ambiguity is an intrinsic limitation of remote sensing that cannot be eliminated by

improving spectropolarimetric measurements.
In actual observations, the magnetic field [B] in the detector image plane can be

decomposed into the sum of a LoS-component [Blos] and a transverse component [Btr]

perpendicular to the LoS, as

B = Blos + ζ |Btr|t̂, with ζ = ±1, (1)

where the LoS is pointing from the Sun toward the observer and t̂ is the unit vector along

the transverse component in the image plane. The removal of the ambiguity corresponds
to determining the sign [ζ] in each pixel. In this sense, the ambiguity is a parity problem
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(Semel and Skumanich, 1998) of the transverse component in each pixel of the image
plane of the detector.

Several empirical methods are available that propose solutions to remove the ambi-
guity. A review is given by Metcalf et al. (2006) with more recent testing by Leka et al.
(2009). In particular, Table 1 of Leka et al. (2009) shows that all methods are based on
choosing the sign [ζ] in each pixel such that a specific quantity is minimized. The quan-
tity to minimize can be, for instance, the angle between the observed transverse field
and a reference field (acute-angle method, with the reference field chosen to be, e.g. the
potential field; see discussion in Metcalf et al. (2006)); or a weighed combination of cur-
rent density and the divergence of the field (minimum-energy method; see again Metcalf
et al. (2006)), with the vertical derivatives of the field components approximated using
an extrapolation in height. Such minimization methods require assumptions and, while
such methods have been tested and used extensively, they all propose hypothetical so-
lutions: none can guarantee to correctly remove the ambiguity because they depend on
models and assumptions, rather than solely on direct observations.

Remote observations of the same area on the Sun from different vantage points
opens a novel possibility for removing the ambiguity of the transverse component of
the magnetic field. From a purely geometrical point of view, if two observations of
the same area on the Sun are available, then the 180◦ ambiguity can, in principle, be
removed (see, e.g. Solanki et al., 2015; Rouillard et al., 2020). The basic idea is that
the unambiguous LoS-component measured by one vantage point will generally have
a non-zero projection on the ambiguous transverse component measured by the second
instrument. In this way, the “true” orientation of the measured transverse component
can be fixed as the sign of ζ that reproduces the alignment with the LoS of the other
instrument. The stereoscopic disambiguation of the transverse-field orientation can be
then derived directly from observations, without any additional hypothesis or modeling.

Differently from traditional single-view disambiguation methods, the equations for
the stereoscopic disambiguation are exact for continuous magnetic fields. However,
there are several factors that can limit the accuracy of the disambiguation in real ap-
plications. For the sake of concreteness, we will consider stereoscopic disambiguation
applied to vector magnetograms from the Helioseismic and Magnetic Imager (HMI)
instrument onboard the Solar Dynamic Observatory (Scherrer et al., 2012, hereafter
SDO), and from the High Resolution Telescope (HRT) and Full Disk Telescope (FDT)
integrated on the Polarimetric and Helioseismic Imager (PHI) onboard Solar Orbiter

(Solanki et al., 2020, hereafter SO). We point out, however, that the method and results
illustrated in this article can be applied using magnetograms from other observato-
ries, such as the forthcoming space-weather Lagrange mission (see, e.g. Hapgood and
Hapgood, 2017).

First, the stereoscopic removal of the ambiguity requires the direct comparison of
vector magnetograms taken from different viewpoints. This implies that the field obser-
vations of one instrument need to be interpolated onto (the image plane and resolution
of) the other. Naturally, the finite instrumental resolution will set a limit to the accuracy
of the disambiguation method. For the sake of convenience we assume critical sampling
which is almost perfectly correct for both SO/PHI-HRT and SO/PHI-FDT onboard
Solar Orbiter and nearly correct for SDO/HMI. Additionally, for the case of Solar

Orbiter, the two available telescopes SO/PHI-HRT and SO/PHI-FDT have markedly
different plate scales (Solanki et al., 2020).
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Second, Solar Orbiter significantly changes distance from the Sun along its orbit,
which implies that the effective resolution on the Sun of SO/PHI magnetograms, and
with them the accuracy of the of their stereoscopic disambiguation, will change along
the orbit.

Third, measurement errors of different nature are indeed present. These can vary
from systematic instrumental errors, such as the accuracy of pointing and the intrinsic
sensitivity or spectral resolution of the instrument, to local inaccuracy in the calibration
and inversion of spectropolarimetric measurements, due to approximations in the em-
ployed model atmosphere (see, e.g. Landi Degl’Innocenti, 2013; Borrero et al., 2014).
Such errors and properties are generally different for the magnetic-field maps built from
different observatories (Borrero et al., 2011; Schou et al., 2012; Albert et al., 2020).

Finally, aside from these geometrical considerations, a more fundamental issue must
be raised, namely that two instruments pointing at exactly the same geometrical loca-
tion on the Sun from different viewpoints do not measure exactly the same field. The
reason is that, due to the difference in the optical path, the emission recorded by the two
instruments originates from different depths in the photosphere. Hence, even if pointing
at the same location on the solar surface, the measured emission would not come from
the same parcel of plasma.

A realistic modeling of all of the sources of inaccuracies mentioned above is ex-
tremely challenging. As the first one in a planned series of studies, the main goal of
this article is to introduce the stereoscopic disambiguation method (SDM hereafter),
described in Section 2, and to verify the practical feasability of removing the 180◦

ambiguity that is intrinsic to spectropolarimetric inversions from remote-sensing re-
constructions of the photospheric magnetic field from two observatories. For this we
consider two type of tests. The first one is a purely geometrical test, where a magne-
togram is seen from different viewing angles and distances by the two detectors; see
Section 3. For this test, we use a set of three different numerical simulations, described
in Section 3.1. The accuracy of the SDM depending on the geometry of the observations
is analysed in Section 4. In the second type of test we consider the synthetic emission
from a three-dimensional numerical simulation of the photosphere (see Section 5) to
treat the additional complication that, when observed from two different viewing angles,
the geometrical height of the same optical depth [τ] surface is different. In this way, the
accuracy of the SDM is tested against the influence of radiation detected by the two
observatories that is not actually coming from the same parcel of plasma (Section 6)
– an assumption that is implicitly made in the geometrical tests in Section 3. The
discussion and conclusions are finally given in Section 7.

2. Stereoscopic Disambiguation Method (SDM)

Let us consider the plane Σ defined by the position of the two detectors, A and B, and
the (center of the) Sun, and let n̂ be the unit vector normal to Σ, as in Figure 1. For
each detector A and B, let us define a base for the reference system defined by the unit
vector n̂X = n̂ normal to Σ (positive toward solar North, with X in [A, B]), the unit
vector l̂X of the LoS-direction (positive in the detector direction), and the (solar-West
oriented) unit vector ŵX = n̂X × l̂X , as S A = (l̂A, ŵA, n̂A) and S B = (l̂B, ŵB, n̂B). By
construction, n̂A = n̂B = n̂, and the image plane of detector A (respectively, B) is
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Figure 1. Schematic representation of the reference systems for the application of the SDM. The plane Σ of
normal n̂ passes through the positions of the detectors A and B and the center of the Sun. For the detector
A (respectively, B) the Cartesian reference system S A = (l̂A, ŵA, n̂A) (respectively, S B = (l̂B, ŵB, n̂B)) is
such that l̂A (respectively, l̂B) is oriented along its LoS and n̂A (respectively, n̂B) is parallel to n̂. On the
plane Σ, γ is the separation angle between detectors A and B, defined as the angle between the LoS-directions,
l̂A and l̂B.

parallel to the plane (ŵA, n̂A) (respectively, (ŵB, n̂B)). The origin of each coordinate

system is placed at the central pixel of the corresponding detector’s image plane. With

this choice, the plane identified by (ŵA, n̂A) is basically a rotation of the detector plane

of the telescope A (and similarly for B).

Let us now consider the polar decomposition of the transverse component in Equa-

tion 1 as

B
A
tr = BA

tr t̂
A = BA

tr (cosαA
ŵA + sinαA

n̂A) (2)

where αA is the counter-clockwise polar angle from ŵA in the (ŵA, n̂A) plane, and

BA
tr ≥ 0 is the amplitude of the transverse component. Equation 1 then becomes

B = BA
losl̂A + ζ

ABA
tr

(

cosαA
ŵA + sinαA

n̂A

)

(3)

where, due to the ambiguity in the observations, the values of αA are restricted to αA ∈

[0, π]. For any αA, the two possible transverse vectors correspond to ζA = ±1. An

analogous vector decomposition is done for B in S B.

Let γ be the separation angle between the lines of sight l̂A and l̂B of the two de-

tectors on Σ, counted as the counter-clockwise rotation angle around n̂A = n̂B with

γ ∈ [−π/2, π/2] and γ = 0 for l̂A = l̂B, as in Figure 1. By construction, the vector B in

S A can be transformed into S B components by the simple rotation BB = R(γ)BA of γ

around n̂, with

Rγ =





















cos γ sin γ 0
− sin γ cos γ 0

0 0 1





















. (4)
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where the row and column order follows (l̂A, ŵA, n̂A). This corresponds to a rotation of
γ around n̂A = n̂B of the image plane, from (ŵA, n̂A) to (ŵB, n̂B). Hence, the rotation
γ implies a foreshortening in the direction ŵB only. In components, we have

BA
los cos γ + ζABA

tr cosαA sin γ = BB
los (5)

−BA
los sin γ + ζABA

tr cosαA cos γ = ζBBB
tr cosαB (6)

ζABA
tr sinαA = ζBBB

tr sinαB (7)

Equation 7 can be rewritten as

ζA

ζB
=

BB
tr

BA
tr

sinαB

sinαA
. (8)

Because of the restrictions on the polar angles αA and αB, both sine functions are always
positive, likewise BA

tr and BB
tr are by definition. Hence, the right hand side of Equation 8

is always positive and, since both ζA and ζB can only take the values ±1, it follows that

ζA = ζB ≡ ζ = ±1 (9)

as a direct consequence of having chosen n̂A = n̂B for the reference systems S A and
S B. In view of Equation 9, we can then re-write Equations 5 and 6 as

ζ =
BB

los − BA
los cos γ

BA
tr cosαA sin γ

(10)

ζ =
BA

los sin γ

BA
tr cosαA cosγ − BB

tr cosαB
(11)

or, equivalently,

ζ =
BB

los − BA
los cosγ

BA
w sin γ

(12)

ζ =
BA

los sin γ

BA
w cos γ − BB

w

(13)

where we used the notation BA
w = BA

tr cosαA (respectively, BB
w = BB

tr cosαB). In this
notation, all vector-field components appearing in Equations 12 and 13 are signed
quantities, and γ ∈ [−π/2, π/2]. Since ζ is defined such as to take only the values

±1, in the numerical implementation of Equations 12 and 13 the sign of the right-hand
side may be taken in order to avoid possible numerical oscillations.

Because of Equation 9, either of Equations 12 or 13 formally solves the ambiguity
for the transverse components on both detectors simultaneously, assuming that they
both provide vector information. However, Equation 12, as opposed to Equation 13,
only involves BA

w, i.e. the transverse component of detector A, hence Equation 12 can

be used to solve the ambiguity in the transverse component of detector A also when
detector B provides only LoS-information. This widens the applicability of Equation 12
to several space- and ground-based observatories, and it is particularly relevant for
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future space-weather monitoring spacecrafts that may not have full spectropolarimetric
diagnostics.

Equations 12 and 13 are geometrically equivalent. However, while Equation 13 in-
volves the transverse components on both detectors, Equation 12 involves only BA

w, i.e.
the transverse component on detector A. Since the transverse component is intrinsically
more noisy than the LoS one in observations, then Equation 12 is expected to be,
broadly speaking, more accurate than Equation 13.

The obvious limiting value where Equations 12 and 13 fail is γ = 0, where the
two systems are co-aligned and no stereoscopic view is available. Similarly, close to
quadrature (γ = ±π/2), the extreme foreshortening of the field of view is expected
to yield large errors, even though Equations 12 and 13 remain formally valid. Other
undefined situations may occur in individual pixels. In particular, Equation 12 cannot
be used in pixels where BA

w = 0. Similarly, ζ cannot be determined by Equation 13 if
BA

los = 0 (or, less obviously, if αA = 0◦, 180◦). However, such conditions will not occur
together, which opens the possibility of applying either Equation 13 or Equation 12
depending on which one is expected to yield the most accurate result in any given pixel
(see Section 3.3.2 and Section 4.3.2).

In practical applications, the field of view will be different for the two detectors,
requiring restriction of the disambiguation area to the smaller of the two. Also, in a real
situation, the observed field in the image plane of each detector needs to be rotated into
the frame defined by Equation 2. Such a transformation can be obtained based on the
positions of the spacecrafts and the characteristics of the detectors employed, and it is
not further discussed here.

For the tests presented in this article, the simulations employed are Cartesian, and the
magnetogram extracted from the simulation represents the solar magnetic field on the
plane of the sky (i.e. as viewed on the image plane), with uniform and homogeneous
resolution. In other words, in the following tests in practice we consider the above
required transformations to be already performed. In particular, we consider the test
field to be already rotated such that (ŵA, n̂A) are the Cartesian axis of the magnetogram,
and that the detector A is placed vertically above the center of the test magnetogram at a
fixed distance (i.e. at constant resolution). The detector B is placed at an angle γ around
n̂A and variable distance (i.e. variable resolution). For simplicity, the fields of view of
both detectors are assumed to cover the same area on the Sun, meaning that, at any
angle γ, the field of view of the two detectors is identical and always covering the entire
area of the magnetogram. Similarly, in each pixel we consider the corresponding field
value to represent the pixel-average of the magnetic field.

3. Geometrical Tests

We use three different numerical models of solar-like magnetic fields, including solu-
tions of the nonlinear force-free equations and numerical MHD simulations. From our
point of view, these simulations model increasingly challenging test fields, from smooth
and well-resolved fields, to proof of the feasibility of the method, to more fine-scaled
and unresolved fields, to estimate the performance in slightly more realistic scenarios.

However, we refer to the articles cited below for discussions on model limitations
and their physical representation of the solar magnetic field.
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Figure 2. TD test model: Field distribution for the three components Blos (left column), Bw (middle column),
and Bn (right column) in the image plane of SDO/HMI (top row) and SO/PHI-HRT (bottom row), for the
reference case (i.e. separated by an angle γ = 40◦, cf. Table 1); the continuous isocontour represents the
±500 G value. The axes represent the number of pixels in the respective image planes that are used to cover
the field of view by each detector in the reference observing configuration; see Section 4 for additional details.

3.1. Numerical Models Used to Construct the Test Magnetograms

The synthetic magnetic-field data used in this test are presented in Figures 2 – 4 and
are obtained from a semi-analytical magnetic-field configuration of a coronal flux rope
(Section 3.1.1) presenting a smooth distribution of the field, and from two synthetic
models presenting more complex field distributions that represent active-region (Sec-
tion 3.1.2) and predominantly quiet-Sun (Section 3.1.3) configurations.

3.1.1. TD: Smooth Test Case

The first numerical test is constructed using the semi-analytical solution of the 3D force-
free equation by Titov and Démoulin (1999, hereafter TD), consisting of a flux rope
embedded in a potential field. The parameters of the TD model used here are the same
as those in the N=1 case in Valori et al. (2016). The original number of pixels (428×684)
is quadrupled by interpolation with respect to Valori et al. (2016), in order to provide a
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Figure 3. PENCIL-AR test model: Field distribution for the three components Blos (left column), Bw (middle
column), and Bn (right column) in the image plane of SDO/HMI (top row) and SO/PHI-HRT (bottom row),
for the reference case (i.e. separated by an angle γ = 40◦, cf. Table 1); the continuous isocontour represents
the ±500 G value. The axes represent the number of pixels in the respective image planes that are used to
cover the field of view by each detector in the reference observing configuration; see Section 4 for additional
details.

very smooth and extremely well-resolved field at all viewing angles, which can be used

as a proof of principle for the SDM; see Figure 2.

3.1.2. PENCIL-AR: Active-Region Test Case

The second test model employs the numerical coronal evolution obtained by driving
the PENCIL code as in Chen et al. (2014), with a photospheric driver from the MU-

RaM simulation described by Cheung et al. (2010). The simulation was interpolated

to twice the original pixel size and then slightly cropped to reduce the influence of

the boundaries. The extracted magnetogram, taken a few pixels above the PENCIL

photospheric boundary, has an extent of 463×239 pixels, with a uniform pixel size of
192 km. The magnetogram shows some fine scales, but is still smooth and well resolved

(see Figure 3). This test, hereafter PENCIL-AR, is supposed to represent a mixture of

field on small and large scales typical of an active region.

3.1.3. MURaM-QS: Pore and Quiet-Sun Test Case

Magneto-hydrodynamic (MHD) simulations of a typical small-scale photospheric struc-
ture, as observed with the Sunrise balloon-borne observatory, were carried out by Ri-

ethmüller et al. (2017) with the MURaM numerical simulation code (Vögler et al.,

2005). The pixel sizes in the simulation are (41.67, 41.67, 15.89) km in x, y, and z,

respectively. These test data are considered as close as possible to real observational

data provided by SDO/HMI and SO/PHI. They contain a small unipolar flux concen-
tration (pore) surrounded by small-scale magnetic structures and a large quiet-Sun field

with strengths from zero up to the kilo-Gauss regime. The slice of the MURaM-QS

numerical simulation used as test model in Section 4 is a plane of 812×812 pixels taken
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Figure 4. MURaM-QS test model: Field distribution for the three components Blos (left column), Bw (middle
column), and Bn (right column) in the image plane of SDO/HMI (top row) and SO/PHI-HRT (bottom row),
for the reference case (i.e. separated by an angle γ = 40◦, cf. Table 1); the continuous isocontour represents
the ±500 G value. The axes represent the number of pixels in the respective image planes that are used to
cover the field of view by each detector in the reference observing configuration; see Section 4 for additional
details.

at a depth of 700 km, which was calculated to approximately represent the τ = 1 surface
for the continuum at 500 nm, for γ = 0.

As a test for the SDM, the MURaM-QS case is extremely challenging as it contains
length-scales of field variations down to the pixel scale; see Figure 4. As discussed in
more details below, in the disambiguation of SDO/HMI magnetograms it is often the
case that, in quiet-Sun areas, a random choice of the orientation is adopted because of
the difficulties that the annealing encounters in areas of low linear-polarization signal
(see, e.g. Hoeksema et al., 2014; Liu et al., 2017).

3.2. Construction of the Test Magnetograms

For each model in Section 3.1, we extract the vector-field distribution at one (flat) layer
at a given height, which we treat as the “photosphere” of the model to be used as a test
(called a test model, for brevity). In order to build a homogeneous set of test models out
of the test cases in Section 3.1, the pixel size and the maximum field strength are set to
be the same for all models, as follows:

First, the vector field of each test model is rescaled such that the maximum value of
the norm of the magnetic field is equal to 2000 G.
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Figure 5. Flow-diagram of the construction of the test magnetograms for the geometrical tests; see Sec-
tion 3.2. The procedure is applied on the image plane of each telescope for the given observing configuration
specified by γ and r∆. Input/output are visualized with green parallelograms, operations with orange
rectangles.

Second, the spatial sampling of the two detectors A and B of Figure 1 in Section 2
and the pixel size of the test magnetograms must be specified. From now on, we refer to
a concrete case where detector A is SDO/HMI and detector B is SO/PHI. Therefore,
we speak of “SDO/HMI spatial sampling” ∆SDO/HMI (respectively, “SO/PHI spatial
sampling” ∆SO/PHI) as the helioprojective (linear) size in arcsec of the area on the Sun
covered by one pixel of SDO/HMI (respectively, SO/PHI) at the center of the solar disk.
Due to the choice of the reference system in Section 2, SDO/HMI is by definition at
γ = 0 and at a fixed distance from the test magnetogram (i.e. at 1 AU distance from the
Sun). Therefore, SDO/HMI can be assigned a fixed spatial sampling of ∆SDO/HMI = 0.5
arcsec and is never affected by foreshortening (see Section 2), whereas SO/PHI spatial
sampling ∆SO/PHI varies along its orbit (the platescale on the SO/PHI-HRT detector is
0.5 arcsec, that of SO/PHI-FDT is 3.75 arcsec). In particular, for varying distance of
Solar Orbiter, the ratio

r∆ =
∆SO/PHI

∆SDO/HMI
(14)

is equal to the ratio of the SO/PHI spatial sampling ∆SO/PHI to the SDO/HMI spatial
sampling ∆SDO/HMI. By changing r∆ we can explore the spatial sampling dependence of
both detectors SO/PHI-HRT and SO/PHI-FDT onboard Solar Orbiter.

Similarly, for a given distance, i.e. for a given r∆, the variation of the separation angle
γ defines the foreshortened resolution (in the ŵB direction, see again Section 2) that is
used by SO/PHI to image the field of view as ∆SO/PHI/ cos(γ). For testing purposes we
vary r∆ and γ independently, even though the two quantities are related by the real Solar
Orbiter orbit (see discussion in Section 7 and Figure 18 in particular).

Finally, there is a third resolution to be considered, that is the resolution of the test
model itself, the native resolution [∆native]. While for the TD simulation the pixel size
is not strictly given, the PENCIL-AR and MURaM-QS simulations have horizontal
pixel size approximately equal to 0.27 and 0.06 arcsec, respectively. In order to have
comparable test cases and to widen the parameter space available for our testing, we
chose to assign to all test cases the same pixel size (∆native = 0.2 arcsec).

Therefore, there are three basic quantities that define the parameters of each synthetic-
observation configuration: the natural resolution of the test model [∆native], the spatial
sampling ratio [r∆] parametrizing the distance of Solar Orbiter, and the separation
angle between spacecrafts [γ]. In summary, as visualize in Figure 5, we simulate an
observation from a given detector with three steps:
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Figure 6. Flow-diagram of the direct application of the SDM; see Section 3.3. The reverse application is
obtained by formally exchanging A and B. Input/output are visualized with green parallelograms, operations
with orange rectangles.

i) fix the observatory view by specifying γ (finite for SO/PHI, zero for SDO/HMI)
and spatial sampling (variable for SO/PHI, fixed to 0.5 arcsec for SDO/HMI);

ii) create the image-plane view of the test model by interpolating the model magne-
togram to the effective spatial sampling of the considered detector, as seen from the
given angle and distance. For SDO/HMI, since it is always placed on the vertical
of the test model, this entails only an interpolation of the test model to the effective
SDO/HMI spatial sampling. We use the term “remapping” for this procedure. On
the other hand, for SO/PHI the test model is first remapped to the γ-foreshortened
field of view at the given SO/PHI spatial sampling, and then the field components
of the test model are re-projected on the SO/PHI reference system (i.e. the field
components are re-written in the S B reference system of Section 2). At this stage,
the image-plane view of the test model field (the “reprojected model field”) still
has the correct orientation of the transverse component and is therefore considered
to be the magnetogram to be compared with;

iii) restrict the orientation of the transverse components, i.e. αA and αB, to be within
[0, π], producing in this way the ambiguity to be removed in the reprojected model
field of each instrument.

The last step produces our basic “observation-like” SDO/HMI and SO/PHI magne-
tograms that reproduce effective spatial sampling and viewing angles, and have am-
biguous transverse components complying with the definition in Equation 2.

3.3. Application of the Disambiguation Equation

Next, Equations 12 and 13 are applied to the SDO/HMI and SO/PHI magnetograms
as constructed in Section 3.2. As discussed in Section 2, in principle either of Equa-
tions 12 or 13 removes the ambiguity of the transverse component of both SDO/HMI
and SO/PHI at the same time. However, one needs to decide which detector grid is used
for its application (see Sect. 3.3.1). In addition, one can choose to use Equation 12,
Equation 13 or a combination of the two (cf. Sect. 3.3.2).

3.3.1. Direct and reverse procedures

First, one can use the SO/PHI magnetogram to remove the ambiguity on the SDO/HMI
transverse component by spatially remapping (but not re-projecting) the SO/PHI grid
onto the SDO/HMI one. This requires interpolating the field components of the SO/PHI
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magnetogram onto the SDO/HMI grid and applying Equations 12 and 13. In this way, ζ

is determined in each pixel of the SDO/HMI grid, thereby removing the ambiguity. The

SDO/HMI disambiguated magnetograms can be then directly compared with the correct

reprojected model field obtained in step 2 of Section 3.2 on the same (SDO/HMI)

grid to assess the correctness of the disambiguation. The numerical implementation

of Equations 12 and 13 that is used in the tests below employs this procedure. In the

following plots, we indicate the above procedure as the direct case, plotted as a orange

solid line in, e.g. Figure 10. Figure 6 shows a diagram of the direct application of the

SDM.

At this point, one could remap the obtained value of ζ or the disambiguated Btr back

onto the SO/PHI magnetogram and remove the ambiguity there too. However, since this

operation would imply an additional interpolation, we refrain from this.

On the other hand, one can simply formally exchange the positions of the two detec-

tors and set the separation angle to −γ in the disambiguation routine. In this way, the

disambiguation routine employs the field components of the SDO/HMI magnetogram

to remove the ambiguity of the SO/PHI transverse component, with the SDO/HMI grid

interpolated onto the SO/PHI one. Again, the SO/PHI disambiguated magnetogram is

then compared with the correct reprojected model field obtained in step 2 of Section 3.2

on the same (SO/PHI) grid. We indicate this procedure as the reverse case, plotted as

a blue dashed line in, e.g. Figure 10. We present the results of the application of both

direction of removal (i.e. the direct and reverse cases) in the next sections.

3.3.2. Combined Application of SDM Equations: εW Parameter

As explained in Section 2, Equation 12 and Equation 13 are two geometrically equiv-

alent ways of removing the ambiguity. In other words, the SDM can be applied using

only Equation 12, only Equation 13, or a combination of the two. One can use such

equivalence to choose which equation to apply in each pixel depending on which one is

expected to be more reliable for the given field values. In particular, for generic values

of γ, Equation 12 is not defined at locations where BA
w ≈ 0 (see also Section 2 for

the component notation). In such locations, one can use Equation 13 instead. Similarly,

Equation 13 yields an undetermined ζ where BA
los ≈ 0, i.e. at the polarity inversion line

as seen from detector A, and the employment of Equation 12 is to be favored instead

of Equation 13 to remove the ambiguity at such locations. There are of course other

locations where, depending on the value of γ, either the numerator or the denominator

of Equations 12 and 13 vanishes, but these are expected to be isolated points. Therefore,

we consider a combined application where Equation 12 is applied everywhere except

in pixels where the amplitude of the transverse component BA
w is below a given value

specified by the parameter εW and the relation

|BA
w| < εW max(|BA

los|) . (15)

The same above prescription for the combined application of the SDM holds for both

the direct and reverse application. As will be demonstrated by our analysis in Sec-

tion 4.3.2, this combined use of Equations 12 and 13 generally yields the best results.
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4. Results of the Geometrical Tests

In this section we report the results of testing SDM as described in Section 3.3 to
the magnetograms obtained following Section 3.2. Varying the test model, the spatial

sampling and separation angles of orbital parameters, and different parameters of the
SDM testing procedure, we aim to thoroughly assess the feasibility of stereoscopic
disambiguation.

4.1. Evaluation Criteria

To evaluate the success of SDM we adopt a selection of the metrics introduced by

Metcalf et al. (2006) and Leka et al. (2009). In particular we consider the metrics:

• Area: For each individual tested configuration (i.e. each data point in, e.g. Fig-
ure 10), we quantify the rate of success of the disambiguation as the fraction

Marea =
Number of correctly disambiguated pixels

Total number of considered pixels
(16)

in each magnetogram. Unless stated otherwise (as in, e.g. Section 4.5), the number
of pixels in the denominator of Equation 16 is the total number of pixels in the rel-

evant image plane (i.e. in the magnetogram). In Equation 16, the numerator is the
number of pixels where the direction of the disambiguated transverse component

(obtained applying the SDM as described in Section 3.3 to the observation-like
magnetogram obtained in Point iii of Section 3.2) matches the true direction as

given by the reprojected test-model field (obtained in Point ii of Section 3.2), on
the relevant image plane; see also Figure 6. Hence, the case of perfect disambigua-
tion in every pixel corresponds toMarea = 1, whereas a systematically incorrect

disambiguation in all pixels corresponds toMarea = 0. A random disambiguation
would theoretically correspond toMarea = 0.5, hence a suitable disambiguation

should obtain a score much higher than this.
• Normalized vertical current density: Difference in the vertical (to the test-model

field) current density Jz, computed as

MJz
= 1 −

∑

|Jz(Reprojected) − Jz(Disambiguated)|

2
∑

|Jz(Reprojected)|
(17)

where Jz is computed for the SDM-disambiguated field and for the re-projected
model field (obtained in Point ii of Section 3.2), on the relevant image plane, i.e.

on the SDO/HMI (respectively SO/PHI) image plane in the direct (respectively
reverse) application of the SDM.

• Transverse Field: The fraction of transverse field above a specified threshold T

that was resolved correctly,

MB⊥>T =

∑

Btr>T (Correctly resolved pixels)

Btr>T (All pixels)
(18)

on the relevant image plane.
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Table 1. Parameters of the tests (“Parameter” column),
with the corresponding symbol (“Symbol” column) and
values of the parameters for the reference case (“Refer-
ence” column) for the geometrical tests in Section 4. The
“Section” column refers to the section where the depen-
dence of the SDM accuracy on that particular parameter
is discussed.

Parameter Symbol Reference Section

SDM formula εW 0.01 4.3

Resolution ratio r∆ 0.6 4.4

Separation angle γ 40◦ 4.4

Threshold T 0 4.5

The metricsMarea andMJz
were judged by Leka et al. (2009) to provide enough infor-

mation for noise-free cases such as those considered in this article. However, in view
of the different properties of the tests fields employed here, and of the MURaM-QS
case in particular, we find it useful to add theMB⊥>T metric introduced by Leka et al.
(2009) for studying noise and unresolved scale effects. Following Leka et al. (2009),
theMB⊥>T metric is computed for the threshold values T = 100 and 500 G.

4.2. Reference Case

We consider a reference case summarized in Table 1, where

• the model test resolution is ∆native = 0.2 arcsec; this formally results into a field
of view of 85.6×136.8, 92.6×47.8, 162×162 arcsec for the TD, PENCIL-AR, and
MURaM-QS test cases, respectively;

• the center-of-disk spatial sampling of SDO/HMI is ∆SDO/HMI = 0.5 arcsec, with
SDO at 1 AU distance from the Sun;

• the SO/PHI-HRT telescope of Solar Orbiter has a center-of-disk spatial sampling
equal to ∆SO/PHI = 0.3 arcsec, i.e. r∆ = 0.6; this corresponds to a distance of Solar

Orbiter from the Sun of 0.6 AU;
• the separation angle between SDO and Solar Orbiter is γ = 40◦;
• for the given∆SO/PHI and γ, the effective spatial sampling, i.e. the ŵB-foreshortened

linear pixel size on the Sun, of SO/PHI-HRT is ∆SO/PHI/ cos(γ) = 0.39 arcsec;
• the SDM is applied using both Equation 12 and Equation 13, where the parameter

for choosing the latter over the former is εW = 0.01; see Section 3.3 for details;

Each of the plots in this section adopts the above values, except for one parameter at a
time that is varied to study the dependence of the SDM on that parameter, as indicated
in the column “Section” of Table 1.

The geometrical parameters of the reference case are chosen to be representative of
a generic situation. In particular, specific combinations are avoided where the grids of
the two instruments happen to overlap exactly (e.g. for γ = 60◦ and a spatial sampling
of SO/PHI-HRT equal to exactly half the spatial sampling of SDO/HMI). The corre-
sponding field components in the image plane of SDO/HMI and SO/PHI-HRT for the
parameters of the standard case are given in Figures 2 – 4. We notice how the same field
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Table 2. Success metrics area [Marea], normalized current density [MJz , and transverse field
[MB⊥>T ], for T = 100 and T = 500 G) defined in Section 4.1, referring to the application of
SDM to the reference case of Table 1, for the three test models TD, PENCIL-AR, and MU-
RaM-QS (see discussion in Section 4.3.1). In each entry in the table the two values correspond
to the direct and reverse cases. The first column in this table [Marea] is identical the first line
in bold face in Table 3.

Model
Marea MJz MB⊥>100G MB⊥>500G

direct / reverse direct / reverse direct / reverse direct / reverse

TD 1.0000 / 1.0000 1.0000 / 1.000 1.0000 / 1.0000 1.0000 / 1.0000

PENCIL-AR 1.000 / 0.999 0.994 / 0.988 1.000 / 0.999 0.999 / 0.999

MURaM-QS 0.87 / 0.82 0.82 / 0.79 0.92 / 0.96 0.97 / 0.99

of view is rendered by a different number of pixels in the image plane of each detector,

and that the model test field is interpolated in both cases to produce the detector image
(i.e. ∆native is smaller than both ∆SDO/HMI and ∆SO/PHI).

4.3. Test of the SDM

This section presents the basic tests of the accuracy of the SDM using the geometrical

configuration of the reference case of Section 4.2. A successful disambiguation is one
that scores significantly better than a random choice of orientation in each pixel.

4.3.1. Application of the SDM to the Reference Case

Table 2 presents the metrics defined in Section 4.1 for application of the SDM to the

reference case in Section 4.2. The two values in each entry are obtained from the direct

and reverse application of SDM, respectively, as explained in Section 3.3.
The entries for the TD model are all unity, for all metrics. This shows that, in case

of a fully resolved and smooth case, SDM can remove the ambiguity in the transverse
component of the reference case with 100 % accuracy, in both the direct and reverse

cases. This proves the correctness of the SDM equations and of their implementation.
Similarly, for the PENCIL-AR model, the SDM rate of success is basically 100 % for
all metrics, despite the smaller fine scales that are present in the field with respect to the

TD model.
In both the TD and PENCIL-AR cases the rate of success is similar for the direct

and reverse cases. In the MURaM-QS case, on the other hand, Marea is 87 % in the
direct case, where the higher-resolution SO/PHI-HRT magnetogram is used to remove
the ambiguity on the lower-resolution SDO/HMI. Conversely, in the less favorable
reverse case, Marea is 82 %. The normalize vertical current density metric [MJz

] is
similar for the direct and reverse cases (approximately 0.8), indicating that the errors
in disambiguation quantified by Marea induces only a moderate variation of MJz

. As
a comparison, for the multipole test case in Table 2 of Metcalf et al. (2006), a much

smoother case than the MURaM-QS discussed here,MJz
varied from 1 to -0.42, de-

pending on the disambiguation method. Finally, the transverse-field metric,MB⊥>T for
T = 100 and T = 500 G, show that the SDM errors are related to small-field values:
with a threshold of 100 G, 92 % of the transverse field is correctly disambiguated in

SOLA: multi_view.tex; 21 December 2021; 2:00; p. 16



Stereoscopic Disambiguation

Table 3. Area metric [Marea] for different disambiguation methods, for the three test models TD, PEN-
CIL-AR, and MURaM-QS. The reference case of Table 1 (in bold face) is same as the first column in
Table 2, and is repeated here for reference. In each entry in the table the two values corresponds to the
direct and reverse cases. The column “Method” indicates which method was used for the disambiguation.
In the bottom half of table the same tests as in the top half are repeated with measurement errors added;
see Section 4.3.3.

Errors
Method

TD PENCIL-AR MURaM-QS

Added direct / reverse direct / reverse direct / reverse

No

Reference case:
1.0000 / 1.0000 1.000 / 0.999 0.87 / 0.82

SDM, Eqs. 12, 13 with εW = 0.01

SDM, Eq. 12 only 0.9999 / 0.9999 0.997 / 0.994 0.85 / 0.80

SDM, Eq. 13 only 0.9977 / 0.9964 0.984 / 0.976 0.84 / 0.81

Random 0.4986 / 0.4998 0.495 / 0.503 0.50 / 0.50

Yes

SDM, Eqs. 12, 13 with εW = 0.01 0.9943 / 0.9917 0.997 / 0.998 0.78 / 0.76

SDM, Eq. 12 only 0.9864 / 0.9774 0.989 / 0.987 0.76 / 0.74

SDM, Eq. 13 only 0.9380 / 0.9496 0.935 / 0.952 0.75 / 0.75

Random 0.5042 / 0.5004 0.502 / 0.498 0.50 / 0.50

the direct case, increasing to 97 % for a threshold of 500 G. In the reverse case, the
fraction of the transverse field correctly represented is even larger, 96 % and 99 % for
T = 100 and 500 G, respectively. Figure 8b confirms that erroneously disambiguated
pixels are all located in small-field areas in the MURaM-QS case. However, we refer to
Section 4.3.2 for a more detailed discussion of the origin of SDM errors.

As we have discussed, the MURaM-QS case is extremely challenging, being a real-
istic simulation of a pore that is surrounded by much less active or even quiet regions.
Moreover, in the reference case the native resolution is smaller than both ∆SDO/HMI and
the (foreshortened) ∆SO/PHI, which implies that small scales are also under-resolved.
This is the first indication that the correct disambiguation of the transverse field is af-
fected by the interpolation on areas where small-scales are present. However, given the
challenges posed by the MURaM-QS test case, we regard a rate of success above 80 %
over the whole magnetogram as a significant improvement with respect to the random
choice (Marea = 0.5) that is usually employed in such cases; see also Section 4.3.2 and
Section 4.3.3.

4.3.2. Dependence on the SDM Equations

We noticed in Section 2 that Equation 12 and Equation 13 are geometrically equivalent,
and in Section 3.3 that a combination of both might be beneficial to the overall SDM
accuracy. Here we test such speculations.

Table 3 reportsMarea in the reference case summarized in Table 1 for the three test
models TD, PENCIL-AR, and MURaM-QS. The different SDM rows in Table 3 refer
to the SDM applied using only Equation 12, only Equation 13, or a combination of
the two; see discussion in Section 3.3. The two values in each entry are obtained from
the direct and reverse application of SDM, respectively, as explained in Section 3.3.
In addition, the row “Random” corresponds to a random choice in each pixel of the
orientation of the transverse component. We consider first the top half of Table 3. The
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bottom part of Table 3 repeats the same tests as in the top half but with measurement

errors added, and is discussed in Section 4.3.3.

The “Random” entry in the fourth line of Table 3 shows that a random choice of the

orientation of the transverse component yields a area metricMarea ≈ 0.5, in all cases,

which reflects the parity nature of the disambiguation problem.

The dependence ofMarea on which of Equations 12 or 13 is used in the application

of the SDM can be assessed comparing the first three lines of Table 3. Employing

Equation 12 almost always results in higher values of Marea than with Equation 13,

and the best results are obtained from a combination of the two (i.e.the reference case,

the first line in Table 3).

In this respect, it is interesting to study the locations where errors are found. For this

we use plots of the simpler TD model, but our conclusion holds for all models. The top

two panels of Figure 7 show the locations of the wrongly disambiguated pixels (orange

squares) obtained in the application of Equation 12 (left column) and Equation 13 (right

column). As expected from the discussion of Equations 12 and 13 in Section 2 and

3.3.2, the disambiguation formula are expected to fail in areas where ζ is ill-defined, i.e.

where BA
w ≈ 0 at the denominator of Equation 12 and where BA

los ≈ 0 at the numerator

of Equation 13 (BA
los and BA

w are the LoS-component and the transverse component

along ŵ, respectively, defined in Section 2 and Figure 1). This is confirmed by the

panels in the top row of Figure 7, where errors in the disambiguation are found for

small values of Bw for Equation 12 (Figure 7a) and of Blos for Equation 13 (Figure 7b),

e.g. around polarity inversion lines. Therefore, we define the error-prone areas for, e.g.

Equation 12 in the direct case on the SDO/HMI image plane, as the area where BA
tr ≤

5×10−3 max |BA
los| or (π/2−0.02 ≤ αA ≤ π/2+0.02); see again Equations 12 and 13 for

notation. An analogous definition of the error-prone areas employing the same heuristic

values is done in the reverse case and on the SO/PHI image plane (not shown). This

heuristic definition of the error-prone areas captures all wrongly disambiguated pixels,

as Figure 7a,b shows.

Since such areas can be identified prior to the disambiguation, this bears two impor-

tant consequences. First, the two disambiguation equations have, in general, different

error-prone areas that are not overlapping, in this way confirming that Equation 12 and

Equation 13 can be used alternatively on every given pixel depending on which is the

most accurate. The result of this combined application of Equations 12 and 13 as per

Section 3.3 is shown in the first line of the Table 3 for εW = 0.01. In all test cases,

the area metric of the combined SDM equations is higher than when only one of the

two equations is applied. In particular, the success rate is exactlyMarea = 1.0, i.e. no

errors, for the TD model in both direct and reverse cases, and for the PENCIL-AR direct

case. Only, a few pixels are erroneously disambiguated in the PENCIL-AR reverse case

(Marea = 0.999). In the MURaM-QS case, the combined application of Equation 12 and

Equation 13 also improvesMarea but to a lesser extent. The spatial distribution of errors

in the PENCIL-AR and MURaM-QS direct cases are shown in Figure 8, confirming the

analysis of the error location detailed above for the TD model.

Then, the possibility of identifying error-prone areas allows the association of a

confidence level to the SDM result in each pixel. Thus, εW can be used as a parameter

to be tuned considering measurements errors, in order to produce the most reliable

disambiguation on the basis of specific uncertainties and noise levels.
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Figure 7. Error map of wrongly disambiguated pixels (orange squares) obtained in the application of
Equation 12 (left column) and Equation 13 (right column). The background fields represent the component
that is determining the error location in the two cases, i.e. of Bw for Equation 12 (left column) and of Blos

for Equation 13 (right column), shown as ±500 G-isolines, in the direct application on the SDO/HMI image
plane, with the corresponding polarity inversion line shown by black-dashed lines. The green areas represent
error-prone areas; see Section 4.3.2 for details. The top (respectively, bottom) row corresponds to magne-
togram without (respectively, with) measurement errors added; see also Section 4.3.3. The axes represent the
number of pixels on the SDO/HMI image plane.
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Figure 8. Error map of wrongly disambiguated pixels (orange squares in (a), orange small squares in
(b)) for the reference case (i.e. the combined application of Equation 12 and Equation 13 with εW = 0.01;
see Table 1), for the (a) PENCIL-AR; and (b) MURaM-QS cases. The background fields represent the
Blos-component shown as ±500 G-isolines, in the direct application on the SDO/HMI image plane; see
Figure 3d and Figure 4d). The TD case is not shown, since no errors are present in this case; see the first
row in Table 2. Notice that wrongly disambiguated pixels in Panel (b) are only 13 % of the total; see Table 2.
The axes represent the number of pixels on the SDO/HMI image plane.
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Figure 9. Dependence of the success rate [Marea] on the parameter εW for the three test cases TD (left
column), PENCIL-AR (middle column), and MURaM-QS (right column), without (top row) and with (bottom
row) measurement errors added. The solid-orange (respectively, blue-dashed) line corresponds to the area
metric for the SDO/HMI (respectively, SO/PHI) case where Equation 12 employs the LoS-component of
SO/PHI to remove the ambiguity on SDO/HMI (respectively, employs the LoS-component of SDO/HMI
to remove the ambiguity on SO/PHI), i.e. to the direct (respectively, reverse) direction of application of
Equations 12 and 13. Note the difference in vertical scale between the TD/PENCIL-AR cases (Panels (a),
(b), (d), (e)) and the MURaM-QS cases (Panels (c), (f)).

Finally, to complete the test on the combined use of Equations 12 and 13, we con-
sider the dependence ofMarea on the parameter εW . Figure 9a – c are obtained for the
reference case of Table 1 by varying only εW , with solid orange and dashed blue lines
representing the direct and reverse direction of applications of Equations 12 and 13,
respectively. The top row of Figure 9, shows that the dependence of the success rate
Marea on εW is negligible in the TD and PENCIL-AR cases, and very weak (up to 1 –
2 %) in the MURaM-QS case. The insensitivity of Marea on εW can be expected on
the grounds of the limited extension of the error-prone areas shown in the top row of
Figure 7, for both direct and reverse methods.

4.3.3. Effect of Measurement Errors on the SDM

In this work we do not explicitly address the effect of noise or unresolved scales on the
accuracy of the SDM. Noise impacts will be the subject of a forthcoming, dedicated
article. However, given the unique possibility of SDM to predict areas that are prone
to errors, we discuss in this section howMarea in the reference case of Section 4.3 are
changed by the presence of measurement errors. We stress that we do not attempt to pro-
vide a physically motivated model of the origin, nature, and spatial distribution of such
errors. Instead, we consider an extremely simplified model for the measurement error
in each pixel of the image plane given by a random component of amplitude up to 70 G,
plus an additional 30 % random relative error on the transverse component. The error is
added to each pixel of the (ambiguous) SDO/HMI and SO/PHI magnetograms prior to
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application of the SDM. The success metrics are again computed as explained in Sec-
tion 4.1, namely comparing the disambiguated magnetogram with the corresponding
(error-free) re-projected model field obtained as in Point ii of Section 3.2.

The bottom half of Table 3 reports the results of the same tests as in the top part
but with measurement errors added. Measurement errors do not have any appreciable
influence on the value ofMarea obtained if a random orientation is chosen (“Random”
entry in row eight), which is to be expected given the random nature of the error model
we adopted. On the other hand, in all cases of separate application of Equation 12
and Equation 13 (sixth and seventh rows respectively), measurement errors cause a
noticeable decrease of the success rate with respect to the corresponding clean cases in
the top half of Table 3; see also Section 4.3.2. This decrease in accuracy can be as small
as 1 %, as, e.g. for the application of Equation 12 in the TD case, but also as large as
9 %, as for, e.g. Equation 12 applied to the MURaM-QS case. Also, consistent losses in
accuracy due to measurement errors are possible even for the smooth and resolved TD
test magnetogram (6 % for Equation 13). The distribution of wrongly disambiguated
pixels is clearly very well captured by the error-prone areas, as Figure 7c,d show. How-
ever, and most importantly, the combined application of Equations 12 and 13, again
with εW = 0.01, is able to recover an accuracy of practically 100 % in both the TD
and PENCIL-AR tests (cf. the fifth and first rows in Table 3 and Section 4.3.1). The
corresponding improvement in the MURaM-QS case is more limited, of about 1 – 2 %.

Next, let us consider how the dependence ofMarea on the εW -parameter is changed
by the presence of measurement errors (see again Section 4.3.2). Figure 9d – f, com-
pared with the clean corresponding cases in Figure 9a – c, shows that for all test fields
such a dependence is stronger when measurement errors are added than in the clean
case. The effect of measurement errors on such a dependence is comparatively larger for
the TD case than for the PENCIL-AR and MURaM-QS cases (note the difference in the
vertical scales between Panels (a), (b), (d), (e) and Panels (e), (f) in Figure 9), bringing
the range of variation ofMarea as a function of εW to about 2 – 3 % for all cases. The
value εW = 0.01 in the reference case in Table 1 was chosen as a compromise between
the maxima of all twelve curves in Figure 9.

In summary, the combined use of Equations 12 and 13 can recover the true field
orientation even in the presence of significant measurement errors, at least for field
with moderately well-resolved scales such as in TD and PENCIL-AR test models.

4.4. Orbit Effects: Spatial Sampling and Separation Angle

In this section we study how the disambiguation of the reference case in Table 1 is af-
fected by the changing separation angle and distance that is caused by spacecraft orbital
motion. In particular, Figure 10 summarizes the area metric [Marea] of the SDM as a
function of the separation angle [γ] (left column) and of the spatial sampling ratio [r∆]
(right column) in Equation 14. The left and right columns of Figure 10, and following
similar ones, are constructed using 36 sample points equally spaced in γ and 11 equally
spaced points in log(r∆).

In the TD case, the area metric of the SDM is 100 % at all separation angles, see
Figure 10a, in both directions of application of Equations 12 and 13 (corresponding
to the direct and reverse cases, solid orange and dashed blue lines, respectively); see
Section 3.3. This plot, like the other two in the left column of Figure 10, is obtained
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Figure 10. Rate of successful disambiguation [Marea] as a function of the separation angle [γ] (left column)
and of the SO/PHI-HRT spatial sampling ratio [r∆] (right column), for the TD (Panels (a), (b)), PENCIL-AR
(Panels (c), (d)), and MURaM-QS (Panels (e), (f)) test magnetograms, for the direct (orange-solid line)
and the reverse (blue-dashed line) cases, respectively. The light-green areas in the right column identify
the range of spatial sampling of the two telescopes (SO/PHI-HRT and SO/PHI-FDT) along the planned
Solar Orbiter orbit. The black vertical-dotted lines mark the native resolution [∆native] of the test model
and the red vertical-dotted lines identify the point of equal spatial sampling of SDO/HMI and SO/PHI-HRT,
∆SDO/HMI = ∆SO/PHI nominally equal to 0.5 arcsec. Note the difference in vertical scale between the TD case
(Panels (a) and (b)) and the PENCIL-AR /MURaM-QS cases (Panels (c) – (f)).
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using all the parameters from the standard case, e.g. at spatial sampling ratio r∆ = 0.6,

except for γ, which is varied. In other words, in the idealized situation where the field

is well resolved on both detectors, the application of the SDM is able to remove the

ambiguity at all values of the viewing angle [γ] without any significant inaccuracy. The

only minimal variations in certainty correspond to the already identified situations of

γ = 0 and γ = ±90◦, in individual pixels, as expected from Section 2.

Similarly,Marea as a function of the spatial sampling ratio [r∆] is above 99 % for all

resolutions considered; see Figure 10b. In the panels on the right column of Figure 10,

the two green areas show the spatial sampling intervals spanned by the higher-resolution

telescope SO/PHI-HRT (left green area) and the lower-resolution telescope SO/PHI-

FDT (right green area) during the orbit of Solar Orbiter. The reference case, used here

for all parameters except for r∆, sets in particular γ = 40◦ for all the plots in the right

column of Figure 10. The accuracy of SDM is basically always 100 % when SDO/HMI

is used to remove the ambiguity of either of the SO/PHI instruments transverse com-

ponent (i.e. in the reverse case, blue-dashed line). In the direct case, where the SO/PHI

LoS component is interpolated onto the SDO/HMI image plane (orange-solid line),

Marea starts deviating from 100 % only in the SO/PHI-FDT range of resolutions, down

to about 99 % for r∆ = 10. This departure is an additional indication that the interplay

between the instrument spatial sampling and the native resolution (i.e. the intrinsic

scales of the observed field) of the test magnetogram plays a role in the accuracy of

the SDM.

As a reference, the vertical black-dashed line in the right panels of Figure 10 corre-

sponds to the ratio of the resolution of the test magnetogram to the SDO/HMI spatial

sampling [∆native/∆SDO/HMI]. Its value is slightly inside the SO/PHI-HRT green area,

meaning that, for the highest values of the SO/PHI-HRT spatial sampling, the test field

is extrapolated rather than interpolated onto the SO/PHI-HRT grid. This is not optimal,

but, since it affects the accuracy on the high-resolution side, it has no real effect on

the results. On the other hand, a larger value of ∆native allows for wider extension of

the right-hand side of the plot by still having enough grid points on the image plane

of SO/PHI-FDT at the lowest resolutions, which is of more relevance to the tests we

present here.

For the PENCIL-AR test magnetogram, the variation of Marea with the separation

angle γ (Figure 10c) can be as large as 10 %. However, such large errors are found

only close to critical angles (γ = 0,±90◦): at a wide range of separation angles, say for

|γ| ∈ [15◦, 70◦], both the direct and the reverse case have accuracy in excess of 99 %.

The dependence on spatial sampling in the PENCIL-AR case (Figure 10d) is much

stronger, but affects the SO/PHI-FDT range of resolutions only. With respect to the TD

case (Figure 10b), the PENCIL-AR magnetogram presents a mixture of large and small

scales, with the interpolation effect having a larger impact on accuracy. While Marea

is above 99 % in the whole SO/PHI-HRT range of spatial sampling for both direct and

reverse cases, its value for the direct case drops rapidly for r∆ > 1, reachingMarea =

0.80 for r∆ = 10. The area metric in the direct case is 99 %, unaffected by spatial

sampling. Opposite to the reverse case, in the direct case the progressively less-resolved

SO/PHI data are used to remove the ambiguity on (the image plane of) SDO/HMI, hence

requiring increasing under-sampling as r∆ grows. It is worth noticing, however, that in

both directionsMarea ≈ 1 within the SO/PHI-HRT resolution span.
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Figure 11. Dependence of the success rateMarea as a function of the threshold T on the amplitude of the
transverse component [G], for the (a) TD, (b) PENCIL-AR, and (c) MURaM-QS test magnetograms. See the
caption to Figure 10 for additional notation. Please, note the difference in vertical scale between the TD and
PENCIL-AR cases (Panels (a) and (b)) and MURaM-QS cases (Panel (c)).

In the MURaM-QS case (Figure 10e,f) the small scales in the test magnetogram
impact the accuracyMarea in the strongest way. In this case the differences between the
direct and the reverse cases are more clearly visible.

In the direct case (Figure 10e)Marea monotonically grows between 54 % and 88 %
as |γ| goes from 0 to 90◦. In the reverse case, local maxima are present close to ±50◦,
with an overall accuracy span between 60 % and 87 %.

Similarly, Figure 10f shows howMarea as a function of the SO/PHI spatial sampling
ratio [r∆] in the direct case rapidly changes from 99 % at the highest spatial sampling
(r∆ = 0.1) to almost 50 % at r∆ = 10. In the reverse case, the area metric is again
independent of spatial sampling, and equal to 82 %. The slightly increased accuracy
at r∆ = 1 and r∆ = 10 is likely only due to occasional overlap of pixels on the two
grids that reduced the interpolation error, thereby increasing the accuracy. Even in the
SO/PHI-HRT resolution interval, there is a significant change in Marea from 95 % to
77 %.

In summary, in the MURaM-QS case, the interpolation of the small scales in the test
magnetogram lowers the attainable accuracy of the disambiguation, with respect to the
TD and PENCIL-AR cases. However, we notice that when particular parameters are
chosen such that interpolation is not required (e.g. in the already mentioned example of
∆SO/PHI = 0.25 arcsec and γ = 60◦) the accuracy of the method in the MURaM-QS case

is also 100 %. As discussed in Section 3.1.3, the MURaM-QS test is to be considered as
a very challenging example with a large fraction of the field below the spatial sampling
of both detectors.

In reality, γ and the distance of Solar Orbiter from the Sun (i.e. the spatial sampling
ratio [r∆]) are not independent as we have treated them in this section, but linked by the
actual orbit. We consider this practical application in Section 7.

4.5. Effect of Threshold on Significant Pixels

The success rate [Marea], Equation 16, is computed including all pixels in the image
plane, regardless of the actual value of the field. However, since accuracy depends
on interpolation, in this section we study how Marea changes if only pixels (on the
image plane of the detector where the ambiguity is resolved) above a given threshold
are included in the calculation of Equation 16.
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Figure 12. Dependence of MB⊥>100G as a function of the SO/PHI resolution ratio [r∆]. Please, note the
difference in vertical scale between the TD case (Panel (a)) and the PENCIL-AR and MURaM-QS cases
(Panels (b) and (c), respectively).

In real applications, errors in the application of disambiguation methods have been

related to high noise levels in the transverse-field component, or to the presence of

under-resolved scales (see, e.g.Leka et al. (2009); Hoeksema et al. (2014)). As an order

of magnitude estimation of the noise level in HMI magnetograms, Liu et al. (2017)

indicates the value of about 150Mxcm−2 as an approximate threshold for the pixel-

averaged signal below which the transverse field outside active regions is assigned a

random value of ζ.

Figure 11 shows the result for the reference case of Table 1 where such a threshold

[T ] is applied, for value of the threshold varying from 0 to 500 G in 23 steps of increas-

ing amplitude from 1 G to 50 G (we recall that all test cases are normalized such as to

have the maximum component at 2000 G). The accuracy in the TD and PENCIL-AR

cases is already very high even if all pixels are included in Equation 16, and there is

little room for improvement by masking; see Figure 11a,b respectively. In the MURaM-

QS case (Figure 11c), however, a strong dependence on the masking values is found. In

particular,Marea is increased by about 10 % in the reverse case by masking all pixels

with transverse component below 150 G, and reachesMarea * 98 % if only pixels with

the transverse component larger than 500 G are considered.

Because of the variation of spatial sampling experienced by SO/PHI along its orbit,

we also study how the transverse field is rendered for different re-binning factor r∆, as

quantified by the transverse field metricMB⊥>100G. Figure 12 shows theMB⊥>100G as a

function of r∆, with all other geometrical parameters kept at the values of the reference

case of Table 1.

First, comparing Panels a, b, and c in Figure 12 with the corresponding panels in

Figure 10 (Panels b, d, and f for the TD, PENCIL-AR, and MURaM-QS cases, respec-

tively) we notice that theMB⊥>100G metric behaves very similarly to theMarea metric

for all cases and r∆-values. In particular, for the TD and PENCIL-AR casesMB⊥>100G

is unity for the entire range of r∆ in the reverse applications, and it departs from unity

only for the higher r∆-values in the SO/PHI-FDT range of resolutions. In the MURaM-

QS case, the fraction of transverse field correctly represented by the disambiguated

magnetogram drops significantly as a function of r∆ in the direct case, while remaining

at the almost constant value of 0.95 in the reverse case. In other words, in the MURaM-

QS case, as the success of the disambiguation quantified asMarea decreases with r∆, so

does the fraction of correctly represented transverse fieldMB⊥>100G, and at the rate.
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Table 4. Nomenclature of the magnetograms discussed in this article. “Type” indicates the name used
for the magnetogram, the “Construction method” column contains keywords identifying how the magne-
togram is built, “Ambiguous” column indicates if the obtained magnetogram is intrinsically affected by
the ambiguity in the transverse component, and “Reference sections” indicates in which sections the given
type of magnetogram is discussed (”Definition”) and used as a test for the disambiguation method (“SDM
application”). We recall that the ambiguity in the ”Reprojected” and ”Reconstructed” types is introduced
prior to the application of the SDM.

Type Construction method Ambiguous Reference sections

Definition SDM application

Reprojected geometrical reprojection no 3.2 4

Synthetic SPINOR + SOPHISM yes 5.1.1 not used

Reconstructed Response functions no 5.1.2 6

Reproj-reconstructed
geometrical reprojection no 5.2 not used

of the (γ = 0)-reconstructed

The plots for the transverse field metric for T = 500 G (MB⊥>500G, not shown here)
is practically indistinguishable from Figure 12, except for the constant value of the
reverse application to the MURaM-QS case attaining the slighter higher value 0.98,
instead of 0.95 as for MB⊥>100G (see Figure 12c). Considering the MURaM-QS case
in the above test, and Figure 11c in particular, this implies that a higher threshold [T ]
on the transverse field does increases the relative accuracy of the SDM. However, such
increased accuracy does not further improve how the transverse field is represented at
different r∆ in the MURaM-QS case, as quantified byMB⊥>T .

Such a strong dependence of Marea on the masking of weak fields is an indirect
confirmation that the small scales are the most important source of inaccuracies for the
SDM. On the other hand, even for the quiet-Sun case in MURaM-QS, the area metric
is above 80 %, which is significantly better than the random orientation. In this respect,
SDM is expected to significantly improve disambiguation with respect to state-of-the-
art using only one viewpoint.

5. Reconstructed Magnetogram Test

In this section we describe the test of SDM with simulated observations from different
viewpoints, rather than with a 2D-map from a numerical simulation that is simply
reprojected at different angles, as in Section 3. Such a test has a relevance that goes
beyond testing the validity of the SDM as such, as it addresses the question of how a
field is rendered by the observation and inversion procedure from different viewpoints.
Without pretence to exhaust this topic, we include it here as an example to illustrate the
complex challenges faced by any stereoscopic method.

5.1. Test Construction

The numerical model used in this test is the full 3D-MURaM-QS simulation of a pore
described in Section 3.1.3. We apply multiple steps of processing to this data set to pro-
duce a SO/PHI-HRT-like observation and a direct reconstruction from the contributing
layers in the 3D-simulation for γ ∈ [0, 10, 20, 30, 40, 50, 60, 70] degrees. The original
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Figure 13. Isolines of the LoS-field component in the synthetic magnetogram (left column) and the recon-
structed magnetogram (central column) saturated at ±3000 G, and the absolute value of their difference (right
column) saturated at 500 G, for viewing angle, from top to bottom, γ = [0, 10, 20, 30, 40, 50, 60, 70] degrees.
In all plots the blue contours are the ±500 G-isoline, and axis units are in pixels.
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resolution of the MURaM-QS simulation is reduced by about 60 % resulting in a dimen-
sion of 324 × 324 pixels at γ = 0◦. Additionally, all three relevant resolutions (native
of the model test [∆native], the SDO/HMI spatial sampling [∆SDO/HMI], and the SO/PHI
spatial sampling [∆SDO/HMI]) are taken to be all equal to 0.5 arcsec, hence r∆ = 1. This
implies that the test simulates the use of the HRT telescope when Solar Orbiter is at
1 AU distance from the Sun. These choices, which are not optimal for the application of
SDM and not really representative of the typical case of application, were nevertheless
necessary in order to limit the numerical efforts required by the reconstruction method
described below. Because of the above limitations, the results in this section are not
entirely comparable with those in Section 4, as we were forced to choose different
parameters from those in Table 1. Hence, in order to limit the modifications to the
model test case, no normalization of the field amplitude is adopted here.

As a matter of fact, different types of magnetograms can be constructed from the
MURaM-QS simulations. We discuss these options in the following, and refer the
reader to Table 4 for a quick view of their essential properties and reference to relevant
sections in the article.

5.1.1. Synthetic Magnetograms

In the standard procedure for creating a synthetic SO/PHI-HRT magnetogram, the MURaM-
QS simulation data are used as input to the forward calculation mode of the SPINOR
radiative-transfer inversion code (see Solanki, 1987; Frutiger, 2000; Frutiger et al.,
2000) to compute synthetic Stokes spectra around the Fe 617.3 nm line as observed
by SO/PHI-HRT, see the blue box in Figure 14. The resulting spectra are then used
as input to the SO/PHI Software siMulator (SOPHISM; see Blanco Rodrı́guez et al.,
2018) to produce SO/PHI-HRT-like observations including an inversion of the degraded
spectra adopting the Milne–Eddington approximation as performed onboard SO/PHI.
This operation results in a synthetic (ambiguous) magnetogram of the simulated region
that contains fields on all scales down to the resolution limit and with strength up to
3500 G. The LoS of these magnetograms at different viewing angles are shown in the
left column of Figure 13.

SDM can then be applied to the synthetic SO/PHI-HRT magnetograms obtained
in this way. However, since the synthetic magnetograms are themselves ambiguous,
such an application is not quite a test of the SDM; since the real orientation of the
transverse field is not known, the answer provided by SDM cannot be validated. In-
stead, in order to assess the success of SDM in resolving the ambiguity, one needs to
construct a dataset best representing the expected correct result (Leka et al., 2009). In
order to obtain that, one needs to know how the transverse field that modulated the
synthetic emission is truly oriented in each pixel of the image plane, for any angle
γ. To obtain such information requires more than simply simulating the SO/PHI-HRT
observation of a 3D-simulation of the solar photosphere as done for the production of
synthetic magnetograms, as it implies tracing back the origin of the optical signal in the
simulation, for any given γ, and reconstructing the orientation of the transverse field.

5.1.2. Reconstructed Magnetograms

Therefore, in addition to the synthetic SO/PHI observations, non-ambiguous, vector
magnetograms describing the solar scene by the MURaM-QS simulations as seen from
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Figure 14. Flow-diagram of the construction of synthetic magnetograms (blue box only; see Section 5.1.1)
and of the reconstructed magnetograms; see Section 5.1.2. The procedure is applied on the image plane of
each telescope for the given observing configuration specified by γ and r∆. Input/output are visualized with
green parallelograms, operations with orange rectangles.

different viewing angles γ were produced, see Figure 14 for a flow diagram of the
procedure described below.

These data contain the reconstructed contribution of each cell along each ray through
the MURaM-QS cube. We compute these contributions from magnetic-response func-
tions (Landi Degl’Innocenti and Landi Degl’Innocenti, 1977; Ruiz Cobo and del Toro
Iniesta, 1994) as a function of the optical depth, which we use as a weighting function to
extract and integrate over the relevant cells from the MURaM-QS data. These magnetic-
response functions are computed from the atmospheric model that SPINOR creates
for an inversion of the SO/PHI-HRT like observations, as described in Section 5.1.1.
Before they can be used to access the magnetic-field data in the MURaM-QS cube,
they must be transformed such that they depend on the geometrical height rather than
on the optical depth. This was achieved with the MapTau subroutine of SPINOR, which
emulates the radiative transport through the MURaM-QS simulation for each viewing
angle [γ]. From the temperature stratifications in the MURaM-QS atmospheres, all
other thermodynamic quantities such as the gas pressure, the electron pressure, or the
density are derived assuming hydrostatic and local thermodynamic equilibrium. The
optical depth is then computed using the frequency-dependent absorption coefficient
for the continuum (see, e.g. del Toro Iniesta, 2007). The output is a height coordinate
along the given, inclined LoS, which is directly compatible with the optical-depth scale
of the magnetic-response functions. We rebin this dataset to match the resolution of the
observation-based response functions. In order to include the instrument degradation
as simulated by SOPHISM, we convolve the rebinned dataset with the optical-transfer
function for a 14 cm telescope aperture (this operation is marked as PHI OTF in Fig-
ure 14). The subsequent weighted integration along the LoS for each pixel results in
what we call a reconstructed magnetogram, i.e. a best-effort approximation to the “true”
solar scene represented by the MHD simulation; see Figure 15b. The reconstructed
magnetograms at different values of γ are used to test the SDM in Section 6, and they
are shown (without any instrument degradation) in the central column of Figure 13 for
different values of γ. A case that also includes the effect of instrument degradation is
shown in Figure 15b and discussed in the next section. Since the reconstructed magne-
tograms retain the information about the orientation of the transverse field component,
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Figure 15. Bw component on the SO/PHI-HRT image plane of (a) the reproj-reconstructed, and (b)
the reconstructed magnetogram; (c) difference between the reproj-reconstructed and the reconstructed
Bw components as quantified by ε(Bw) defined in Equation 19, at γ = 40◦ for r∆ = 1 and
∆native = ∆SDO/HMI = 0.5 arcsec. In all panels, the black contour represents the 500G isoline of |Bw |, and
axis units are in pixels.

they can be used as a test for SDM that includes the spectropolarimetric influence of
the viewing angle; see Section 6.

5.1.3. Difference Between the Synthetic and the Reconstructed Magnetograms

We notice that, in the reconstruction procedure described above, the weighted integra-
tion is done with respect to an average τ = 1 surface for the solar scene at the given
γ. As a result, the formation of the reconstructed magnetograms are slightly shifted
towards larger heights for larger γ and they also do not necessarily coincide with the
formation heights of the synthetic observations, even for the same viewing angle. The
effect of this shift is shown in the right column of Figure 13: the difference between
the synthetic magnetogram (left column) and the reconstructed magnetogram (central
column) for a same value of γ can be locally very large, and it is on average of the order
of 20 – 35 G for the LoS-component and 70 – 140 G for the transverse one, depending
on γ.

The natural discrepancy of reconstructed vs. synthetic magnetograms and the in-
crease of the formation height with γ, which is identical to the center-to-limb variation,
affect both the magnitude and orientation of the resulting field vector. Therefore, the re-
constructed magnetogram never perfectly matches the synthetic magnetogram obtained
from the direct application of the SPINOR inversion code. This is the price that we
need to pay in order to retain the information about the orientation of the transverse
component that is needed for testing SDM.

5.2. Difference Between the Reprojected-Reconstructed and the Reconstructed

magnetograms

In the previous section we introduced the reconstructed magnetograms to be used as
tests of SDM and discussed how such magnetograms differ from the synthetic magne-
tograms (Figure 13) for a given value of the viewing angle γ. In this section we further
discuss the geometrical effect of the viewing angle on the reconstructed magnetograms.
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This is an attempt to quantify the fact that the observed emission from a feature at
different γ will never originate from the exact same parcel of plasma. This particularly
affects weak-magnetic-field structures, especially where such structures are found to
be predominantly horizontal (see e.g. Danilovic, van Noort, and Rempel, 2016, and
references therein). In such a case, first only a small change of the formation height
can change the LoS-component from positive to negative if the field lines are even only
slightly changing their orientation with height. Second, as the transverse Zeeman effect
is a second-order effect, i.e. the amplitudes of the corresponding Stokes parameters are
proportional to B2, the measurements of the transverse field strength are significantly
more sensitive to noise effects in the observations than those of the LoS-components.

In order to test for the change in the depth of the τ-surface due to the different
viewing angles, we compare the reconstructed magnetograms at any given γ with the
magnetogram obtained by applying the geometrical re-projection described in Sec-
tion 3 and Figure 5 to the γ = 0 reconstructed magnetogram. We identify the latter
as the (geometrically) reprojected-reconstructed magnetogram (“Reproj-reconstructed”
in Table 4). This comparison between reconstructed and reprojected magnetograms
specifically addresses the question of what is the effect of different viewing angles
on the reconstructed field, to the best of our abilities at simulating real observations
that retain the information about the orientation of the transverse field. Again, this
is not a test for SDM but, instead, it is a direct comparison where we do not apply
any disambiguation, and indeed employs unambiguous reconstructed model fields. In
fact, both magnetograms have the correct (reprojected or reconstructed) orientation of
the transverse field, and we retain this information here since the above question is
unrelated to the disambiguation problem.

Panels a and b in Figure 15 shows the Bw-component of the reproj-reconstructed (a)
and reconstructed (b) magnetograms in the image plane of SO/PHI-HRT for γ = 40◦.
At a first glance, the two distributions looks similar enough, with the reconstructed field
appearing smoother than the reprojected field. This is confirmed by differences in the
blue isolines, corresponding to |Bw|=500 G.

A more quantitative and local measure of the difference between the two magne-
tograms can be computed in each pixel as

δBw =

∣

∣

∣
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, (19)

i.e. by the absolute value of the average divided by the average of the absolute values.
In each pixel, δBw = 0 means that Bw is identical in the reproj-recontructed and re-
constructed magnetograms, whereas δBw = 1 corresponds to the case where the field
has the same amplitude in both magnetograms but is opposite in sign. Figure 15c shows
that the differences between the two magnetograms are actually quite significant in low-
field regions. The value of δBw is smaller than 0.5 in 31 % of the pixels in Figure 15c.
Values close to zero are quite obviously found in high-field areas. On the other hand,
on small-field areas the distribution of δBw is rather granular, and is difficult to identify
a pattern for the location where δBw is close to one. Similar plots and conclusions are
obtained for the other field components too (not shown).

Therefore, according to our computational model of the observation (Section 5.1),
the differences in the observed field as a function of the observing angle are significant.
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Figure 16. The metrics (a) Marea; (b) MJz ; (c) MB⊥>100G; (d) MB⊥>500G, as a function of the separation
angle [γ], for the reconstructed magnetogram. direct and reverse application are coded in orange and blue
colors, respectively.

More generally, the discussion in this section and in Section 5.1.1 shows the complexity
and intrinsic limitations of creating observation-like test magnetograms. Such a diffi-
culty adds to the complexity of the MURaM-QS numerical solution that is used as a
basis for the test production, and that were extensively discussed throughout Section 4.
Hence, the application of SDM to reconstructed magnetograms described in Section 6
offers an exceptionally challenging test that we regard as a first application.

6. Test of the SDM on Reconstructed Magnetograms

In this section we apply SDM to the ambiguous reconstructed magnetograms obtained
as described in Section 5.1.2 for γ = [10, 20, 30, 40, 50, 60, 70] degrees, i.e. using only
the magnetograms shown in the central column in Figure 13. This test is similar to
the geometrical test of Section 3 except that we used the reconstructed magnetograms
obtained in Section 5.1.2 for its application. In particular, we first apply Point iii of
Section 3.2 to the reconstructed magnetograms at γ = 0 and at finite values of γ to
introduce the ambiguity; second, we apply SDM as described in Section 3.3 to the (now)
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ambiguous reconstructed magnetograms, for r∆ = 1 and different separation angles [γ];
third, we then use the knowledge of the real orientation of the transverse component in
the reconstructed magnetograms to assess the correctness of the disambiguation using
the success metricsMarea,MJz

, andMB⊥>T for T = 100 G and T = 500 G defined in
Section 4.1, as a function of γ (see Figure 16).

Figure 16a shows that the accuracy of the disambiguation as quantified by Marea

is almost monotonically decreasing from 79 % to 65 % in the direct case, while it is
more flat between 78 % and 83 % in the reverse case, with a peak at γ = 20◦. The
other three metrics (MJz

, MB⊥>100G, and MB⊥>500G, shown in Figure 16(b), (c), and
(d), respectively) have basically opposite trends for the direct and reverse cases, as a
function of γ. For instance, the total vertical current metric [MJz

, Panel b] increases
in the reverse application from 57 % to 71 % for increasing γ, whereas it decreases to
about 50 % in the direct application. A similar anti-symmetric dependence on γ is true
for the transverse-field metricsMB⊥>100G andMB⊥>500G In this case it is worth noticing
that for separation angles larger than about 30◦, the fraction of the transverse field above
100 G that is correctly disambiguated is above 90 % in the direct case, and this fraction
becomes almost 100 % if the threshold [T ] is raised to 500 G. We recall that, in the case
examined in this section, the spatial sampling ratio is unity [r∆ = 1], hence, from the
geometrical point of view, there is a pure foreshortening effect but the spatial sampling
of the two detectors is the same. Therefore, the decrease of the success metrics with
increasing γ in the direct case is likely the consequence of probing increasingly different
layers in the modelled atmosphere. Since, as noticed already above, the MURaM-QS
field is mostly vertical, such an effect is less pronounced when using the top-view from
SDO/HMI to resolve the ambiguity of SO/PHI-HRT, i.e.in the reverse case.

When considered together, the most notable qualitative change between the geomet-
rical case in Figure 10e and the SDM application to reconstructed magnetograms of
Figure 16a,b is the absence of a clear maximum at intermediate values of γ. Moreover,
the introduction of a threshold in the computation ofMarea, while sensibly improving
the rate of successful disambiguation in the reverse case, it is counter-productive in the
direct case.

To complete the above picture, Figure 17 shows the variation of Marea as a func-
tion of the threshold on included pixels, for the fixed value γ = 40◦, computed as
described in Section 4.5. Again, we find a more complex qualitative dependence than
in the geometrical case in Figure 11c; as the computation ofMarea is restricted to pixels
with increasingly larger values of the transverse component, the area metric for the
reverse case is increasing, up to a very high value of Marea = 97 % for a threshold
of 500 G. On the other hand, the same threshold has largely the opposite effect in the
direct case, where a value of almost 400 G is required in order to increase on theMarea

obtained without any threshold. The lower success rate in the direct case is identified
as a consequence of the intrinsic properties of stereoscopic measurements which do not
allow to identically probe small-scale and low magnetic solar regions when seen from
different vantage points.

In conclusion, the spectropolarimetric effect of different viewing angles has signif-
icant consequences on the application of (possibly any) disambiguation method. In
consideration of the analysis in Sections. 5.1 – 5.2, this is hardly surprising, given that
SDM assumes that the same field is observed from different viewpoints. Since observing
from different directions produces significantly different fields (see Section 5.2), any

SOLA: multi_view.tex; 21 December 2021; 2:00; p. 34



Stereoscopic Disambiguation

0 250 500
Threshold on transverse field [G]

0.2

0.4

0.6

0.8

1.0

M
ar

ea

Direct
Reverse
Direct
Reverse

Figure 17. Dependence of the metric Marea as a function of the the threshold [T ] on the amplitude of
the transverse component (see also Section 4.5) for the reconstructed magnetogram, at γ = 40◦. direct and
reverse application are coded in orange and blue colors, respectively.

geometrically based method of disambiguation such as SDM translates such differences
into inaccuracies. On the other hand, the application in the reverse case (i.e. basically
using SDO/HMI to remove the ambiguity of SO/PHI-HRT) has, even in such a complex
case, an accuracy in excess of 80 %, which can rise to above 90 % if a 200 G-threshold
on the transverse component is introduced. Considering the unfavorable (and unrealis-
tic) parameters that we were forced to adopt for the SDM test presented in this section,
namely the simulated observation of a small pore surrounded by large area of quiet-Sun
with the limited resolution provided by Solar Orbiter at 1 AU (r∆ = 1), we find the
above results very encouraging for the application of the SDM even when the effect
of optical path is included. A more extended exploration of parameter space, as well
application to higher-resolution simulation of active-region field, are needed, and they
planned for future publications.

7. Conclusions

We present in this article the analytical formulae, Equations 12 and 13, that enable ob-
servational resolution of the ambiguity of the transverse component in the image planes
of two telescopes observing the same region on the Sun from two different vantage
points. These formulae are implemented in the stereoscopic disambiguation method
(SDM) for application to any two observatories. SDM is designed to be applied to any
chance of stereoscopic observations, as currently given by SDO/HMI and SO/PHI, but
also to other existing observatories as well as forthcoming missions (e.g. Lagrange). In
particular, we notice that the SDM can in principle be applied even if one of the two
detectors only measures the LoS-component of the magnetic field (i.e. using the latter
as detector B in Equation 12 and discarding Equation 13).

SDM is then thoroughly benchmarked using geometrical tests and tests employing
reconstructed magnetograms. In the first type of test, an identical 2D vector magne-
togram is viewed from different angles and distances, i.e. spatial sampling. We consider
three types of test magnetograms going from very smooth field (TD), to field with both
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large and small scales (PENCIL-AR), to a simulation of a pore surrounded by a large
quiet-Sun area (MURaM-QS).

The result of the geometrical tests can be summarized as follows:

• in an idealized situation such as the TD where the field is smooth and well resolved
on both detectors, the application of SDM is able to remove the ambiguity with
100 % accuracy, at all separation angles and considered spatial sampling;

• for an active-region field (PENCIL-AR), the disambiguation accuracy is also 100 %,
with small decreases at expected locations (e.g. when the spacecrafts are co-
aligned or close to quadrature), or for the lower resolution of the SO/PHI-FDT
telescope;

• the accuracy is modulated by both the separation angle between detectors as
well as by the SO/PHI-HRT effective resolution, i.e. by the distance of the Solar

Orbiter spacecraft from the Sun;
• the disambiguation accuracy is found to be mostly sensitive to the small scales

present in the test magnetogram, going from perfect disambiguation (e.g. for the
smooth TD-test magnetogram) to almost 50 % accuracy, equivalent to a random
resolution of the ambiguity, in the least favorable case of observing fields with
very small scales (such as the MURaM-QS) with the lower-resolution SO/PHI-
FDT telescope when Solar Orbiter is at 1 AU;

• furthermore, the success rate is found to increase sensibly even in the most chal-
lenging MURaM-QS case if pixels with small values of the transverse component
are not included in the disambiguation procedure;

In addition to testing the method, our parametric study allows meaningful appli-
cation to the Solar Orbiter observations. The practical case of the expected accuracy
of SDM during the years 2022 – 2024 can be obtained by using the orbit information.
Figure 18 shows the expected accuracy for the PENCIL-AR case, as a function of time
from 2021 to 2024. This type of study can be used to place remote-sensing windows
at times that are favorable to stereoscopic disambiguation. The systematic exploration
of the best placement of observing remote-sensing windows that includes such effects
is straightforward but extensive, and we reserve this study for a dedicated work. Here
we limit ourselves to notice the anti-correlation (clearly visible for the SO/PHI-FDT
telescope) between distance, i.e. spatial sampling, and accuracy, and that this effect is
stronger than the separation angle effect.

The second type of test that we perform employs reconstructed magnetogram, i.e.
synthetic spectropolarimetric observations at different angles obtained using a 3D-MURaM-
QS simulation of the upper photospheric layers; see Section 5.1.2. By testing the SDM
with reconstructed magnetograms we can draw the following conclusions:

• viewing the same area from different angles has a significant influence on the
observed values. Since stereoscopic methods are based on combining two different
viewpoints, this implies that any stereoscopic disambiguation method faces seri-
ous challenges, in particular in low-field areas, regardless of the method details;

• as a consequence, the application of SDM to reconstructed magnetograms trans-
lates the differences in the reconstructed magnetograms as seen from different
angles into inaccuracies of the disambiguation. Such inaccuracies are expected to
be small in the case of strong-field areas such as active regions, but proper testing
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Figure 18. ExpectedMarea during the years 2021 – 2024 as Solar Orbiter travels on its orbit. The top panel
shows the orbit of the spacecraft in terms of the separation angle with SDO/HMI [γ] and the distance from
the Sun (RS O , related to r∆ by Equation 14); the middle panel shows the expected Marea from application
of SDM using the SO/PHI-HRT telescope, while the bottom one is for the SO/PHI-FDT telescope (notice
the different vertical axis range forMarea in the middle- and bottom-panels). Orange crosses (respectively,
blue squares) show the results of the direct (respectively, reverse) application of the SDM. The green areas
correspond to times where SDO and Solar Orbiter are on the same side of the Sun, i.e. when stereoscopic
disambiguation is possible. The model field used for this test is the PENCIL-AR case; see Section 3.1.2.

of such supposition requires suitable numerical simulations. However, even in the
challenging case of reconstructed observations of a pore surrounded by quiet Sun,

the SDM accuracy can attain significant improvements (above 80 %) with respect
to a random choice of orientation when applied in the reverse mode, i.e. when
SDO/HMI is used to remove the ambiguity of SO/PHI-HRT.

We regard these results as preliminary. On the grounds of the geometrical tests summa-

rized above, there is basically a 10 % difference between geometrical and reconstructed
tests in the disambiguation accuracy of the MURaM-QS magnetogram. As in the geo-
metrical test case the success rate in strong magnetic-field regions of these simulations
is easily 10-15 % better than in the quiet Sun, we would expect a success rate in ex-

cess of 90 % if applied to magnetograms thresholded for only sunspot areas (see, e.g.
Figure 11c). We have chosen this type of MURaM-QS simulation to test SDM under
conditions as close as possible to a realistic case. It has to be emphasized that during
periods of high solar activity typical magnetograms obtained by SDO/HMI contain only
a very small area of regions with pixel-averaged signal above 150 Mx cm−2 (cf. Liu

et al., 2017). In the weak-field regions the success rate of SDM is highly dependent
on the ratio of spatial resolutions of the input data since a reliable disambiguation
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needs to take into account the magnetic fine scale of the solar photosphere. Despite the
intrinsic limitations of observing particularly the exact fine structure of weak transverse
field regions from different viewpoints (see discussion in Section 5) a success rate of
above 80 % (Figure 16a) can be achieved with SO/PHI-HRT observations with a spatial
sampling comparable or better than that of SDO/HMI.

In conclusion, the stereoscopic disambiguation method [SDM] is in principle an
exact method of removing the ambiguity, which is proven to yield 100 % accuracy when
applied to idealized conditions. The accuracy of SDM is found to depend mostly on the
amount of unresolved structure at a given spatial sampling (i.e. distance from the Sun),
but it can otherwise remove the ambiguity with excellent accuracy. Even for the quiet-
Sun case (MURaM-QS), the rate of success of SDM is found to be above 80 %, which is
significantly better than the random orientation currently adopted in many situations. In
this respect, the SDM is expected to improve significantly disambiguation with respect
to the current state-of-the-art using one viewpoint only, and it can be used as a reliable
benchmark for other single-viewpoint methods not only in strong-field areas but also
on quiet-Sun areas.

The study presented here is preliminary in many ways. First, a systematic study of
the influence of noise and unresolved scales on the accuracy of SDM along the lines of
Leka et al. (2009) is required to assess such effects in a realistic way. On the other hand,
a direct extension of the present work will be to test SDM employing reconstructed
magnetograms of an extended sunspot, such as modelled by Siu-Tapia et al. (2018).

Second, and more specific to the stereoscopic nature of the SDM, a difference in the
calibration of the two employed telescopes may potentially be an issue in real appli-
cations. Our preliminary investigations indicate that a difference in the field strength
measured by the two telescopes up to 10 % results in a decrease of accuracy in SDM
disambiguation of about 2 % at most. In other words, a moderate difference in the
calibration functions of the observing instruments is not expected to greatly affect
the accuracy of the SDM. However, a proper estimation of the effect of calibration
differences on the SDM is best done once the actual calibration functions of SDO/HMI
and SO/PHI become available.

Third, the application to real Solar Orbiter observations will require the implemen-
tation of SDM in the Solar Orbiter pipeline, and the inclusion of maps of estimated
errors based on the parameter optimization presented here. In this respect, one notable
missing test is the dependence of SDM on pointing errors. Since the pointing informa-
tion is essentially a labeling of pixels with coordinates that is an integral part of the data
processing of each telescope, we postpone this test to the implementation of SDM in
the Solar Orbiter data pipeline.

Finally, a comparison with traditional, single-view disambiguation methods would
be desirable in order to quantitatively assess how SDM can be used to benchmark more
traditional, single-viewpoint disambiguation methods.
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